ウイルス&治療薬 研究開発ツール - PerkinElmer Japan

ウイルス&治療薬 研究開発ツール

ウイルス研究 関連技術の概要

  • Alpha:2種ビーズを用いて洗浄操作を行うことなく、分子間の相互作用を迅速に検出するスループットの高いアッセイテクノロジーです。

  • LANCE:時間分解蛍光共鳴エネルギー法(TR-FRET 法)を用い分子間相互作用を検出するテクノロジーです。

  • briteLite/neolite/steadylite:レポータージーンアッセイ用の発光基質です。

  • ATPlite:生細胞のマーカーであるATPを検出する試薬です。細胞増殖・毒性の観察にご利用頂けます。

  • テクノロジーの比較(Alpha, LANCE, ELISA)

AlphaLISA 化学発光ELISA 発色ELISA DELFIA (TRF) LANCE
(TR-FRET)
 




洗浄 不要 必要 必要 必要 不要
アッセイステップ 3 ~ 4 ステップ > 5 ステップ > 5 ステップ > 5 ステップ 2 ~ 3 ステップ
プレートフォーマット 96, 384, 1536 well 96 well 96 well 96, 384 well 96, 385, 1536 well
サンプル量 < 5 µL 50 ~ 200 µL 50 ~ 200 µL 25 ~ 200 µL < 15 µL
サンプルタイプ *
(マトリックス)
バッファー、細胞上清、細胞溶解液、組織、尿、血清、血漿 バッファー、細胞上清、細胞溶解液、組織、尿、血清、血漿、全血 バッファー、細胞上清、細胞溶解液、組織、尿、血清、血漿、全血 バッファー、細胞上清、細胞溶解液、組織、尿、血清、血漿、全血 バッファー、細胞上清、細胞溶解液、組織、尿、血清、血漿
感度 ** ★★★★★ ★★★ ★★ ★★★★ ★★★
ダイナミックレンジ ~ 5 log ~ 4 log ~ 2 log ~ 5 log ~ 4 log
シグナルの安定性 ~ 24 hrs < 10 minutes ~ 1 hour Days ~ 24 hrs

* 希釈の検討が必要なことがあります。
** バッファー中の mouse MMP-12 濃度を測定した結果です。

 

ウイルス感染・免疫応答

ワクチンおよび中和抗体の研究開発

COVID-19

関連文献

Alpha テクノロジー

General

Reeves “Application and utility of mass cytometry in vaccine development”
FASEB https://pubmed.ncbi.nlm.nih.gov/29092906/ (Reveiw AlphaLISA)

CMV

Ligat “Identification of a short sequence in the HCMV terminase pUL56 essential for interaction with pUL89 subunit” Nature Scientific Reports
https://www.nature.com/articles/s41598-017-09469-7 (Protein-Protein interaction)

Dengue Virus

  1. Carr “Molecular Responses of Human Retinal Cells to Infection with Dengue Virus”
    Mediators of Inflammation
    http://downloads.hindawi.com/journals/mi/2017/3164375.pdf (AlphaLISA IFN-βkit)
  2. Sanaki “Inhibition of dengue virus infection by 1-stearoyl-2-arachidonoyl-phosphatidylinositol in vitro”
    FASEB https://pubmed.ncbi.nlm.nih.gov/31638831/ (AlphaLISA IL-8 Biotin-free, TNFa Biotin-free kit)
  3. Wang ”The establishment and clinical evaluation of a novel, rapid, no-wash one-step immunoassay for the detection of dengue virus non-structural protein 1” Journal of Virology Methods
    https://www.sciencedirect.com/science/article/abs/pii/S0166093419302745 (NS1検出:Alphaアッセイ構築)
  4. Lian “ Discovery of Immunologically Inspired Small Molecules that Target the Viral Envelope Protein”
    ACS Infect Dis https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392429/pdf/nihms-991413.pdf (Protein-Protein interaction)

Ebola

Basu “Novel Small Molecule Entry Inhibitors of Ebola Virus”
The Journal of Infectious Diseases https://academic.oup.com/jid/article/212/suppl_2/S425/2194313 (SureFire)

Epstein-Barr virus

Oba ”Circulating CD3+ HLA-DR+ Extracellular Vesicles as a Marker for Th1/Tc1-Type Immune Responses”
Journal of Immunology Research
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6530242/pdf/JIR2019-6720819.pdf (EVsの検出)

HBV

  1. Ghosh“Detection of hepatitis B virus infection: A systematic review”
    World J Hepatol https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606204/pdf/WJH-7-2482.pdf (HBsAg review)
  2. Berke “Capsid Assembly Modulators Have a Dual Mechanism of Action in Primary Human Hepatocytes Infected with Hepatitis B Virus”Antimicrobial Agents and Chemotherapy
    https://aac.asm.org/content/aac/61/8/e00560-17.full.pdf (HBe/cAg, HBsAgの検出)

HCV

  1. Zeng Hou “Lead discovery, chemical optimization, and biological evaluation studies of novel histone methyltransferase SET7 small-molecule inhibitors” Bioorganic & Medicinal Chemistry Letters Volume 30, Issue 9, 1 May 2020, 127061
  2. Mousseau, Guillaume, et al. “Dimerization-Driven Interaction of Hepatitis c Virus Core Protein with NS3 Helicase.” The Journal of General Virology, Sept. 2010, doi:10.1099/vir.0.023325-0. (Protein-Protein interaction)
  3. Mukherjee, Sourav, et al. “Identification and Analysis of Hepatitis C Virus NS3 Helicase Inhibitors Using Nucleic Acid Binding Assays.” Nucleic Acids Research, June 2012 (Protein-RNA/Oligo interaction)

HIV

  1. Jacques J. Kessl “HIV-1 Integrase Binds the Viral RNA Genome and Is Essential during Virion Morphogenesis” Cell Volume 166, Issue 5, 25 August 2016, Pages 1257-1268.e12 (Protein-RNA interaction)
  2. Carley Tasker “Depot Medroxyprogesterone Acetate Administration Alters Immune Markers for HIV Preference and Increases Susceptibility of Peripheral CD4+ T Cells to HIV Infection“ ImmunoHorizons 2017, 1 (9) 223-235 (Alpha p24 kit)
  3. Hongyan Liao “Circulating Plasmablasts from Chronically Human Immunodeficiency Virus-Infected Individuals Predominantly Produce Polyreactive/Autoreactive Antibodies“ Front. Immunol https://www.frontiersin.org/articles/10.3389/fimmu.2017.01691/full (Alpha p24 biotin-free kit)
  4. Doyle T “The interferon-inducible isoform of NCOA7 inhibits endosome-mediated viral entry“. Nat Microbiol. https://europepmc.org/article/PMC/6329445(Alpha p24 biotin-free kit)
  5. Lucy Rutton “A Universal Approach to Optimize the Folding and Stability of Prefusion-Closed HIV-1 Envelope Trimers”
    Cell Reports https://www.sciencedirect.com/science/article/pii/S2211124718304066 (その他)
  6. Liangqun Huang “Targeting HIV-1 Protease Autoprocessing for Highthroughput Drug Discovery and Drug Resistance Assessment“
    Nature Scientific Reports https://www.nature.com/articles/s41598-018-36730-4 (Protease assay)
  7. Hombrouck, Anneleen, et al. “Virus Evolution Reveals an Exclusive Role for LEDGF/P75 in Chromosomal Tethering of HIV.” PLoS Pathogens, vol. 3, no. 3, Mar. 2007, p. e47 (Protein-Protein interaction)
  8. Mosenden, Randi, et al. “Mice with Disrupted Type I Protein Kinase A Anchoring in T Cells Resist Retrovirus-Induced Immunodeficiency.” J Immunol. 2011 May 1;186(9):5119-30 (Protein-Protein interaction)
  9. De Rijck, Jan, et al. “Overexpression of the Lens Epithelium-Derived Growth Factor/P75 Integrase Binding Domain Inhibits Human Immunodeficiency Virus Replication.” Journal of Virology, vol. 80, no. 23, Dec. 2006, pp. 11498–509 (Protein-Protein interaction)

HPV

Trausch JJ “Development and characterization of an HPV Type-16 specific modified DNA aptamer for the improvement of potency assays“ Anal Chem. 2017 Mar 21;89(6):3554-3561.

Influenza

  1. Rameshwar U. Kadam1 “Potent peptidic fusion inhibitors of influenza virus“
    Science https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659926/pdf/nihms910891.pdf (HAs-peptide interaction)
  2. Yoshihiko Terauchi “IgA polymerization contributes to efficient virus neutralization on human upper respiratory mucosa after intranasal inactivated influenza vaccine administration“
    Human Vaccines & Immunotherapeutics
    https://www.tandfonline.com/doi/full/10.1080/21645515.2018.1438791 (AlphaLISA kits: IgG, IgA, IgM)
  3. Wang YF “Glycan-binding preferences and genetic evolution of human seasonal influenza A (H3N2) viruses during 1999-2007 in Taiwan”
    PloSOne. 2018 May 10;13(5) (PAA/Sugar-Protein interaction)
  4. Maria J. P. van Dongen “A small-molecule fusion inhibitor of influenza virus is orally active in mice” Science 08 Mar 2019 (Protein-Protein interaction)
  5. Junpei Omni “The inducible amphisome isolates viral hemagglutinin and defends against influenza A virus infection” Nature Communications https://www.nature.com/articles/s41467-019-13974-w.pdf (HA- sialyllactose polymer interaction)
  6. Wang, Mingjun, et al. “HLA Class I Binding 9mer Peptides from Influenza A Virus Induce CD4 T Cell Responses.” PloS One, vol. 5, no. 5, 2010, p. e10533 (Protein-Protein interaction)
  7. Wang, Ya-Fang, et al. “Characterization of Glycan Binding Specificities of Influenza B Viruses with Correlation with Hemagglutinin Genotypes and Clinical Features.” Journal of Medical Virology, vol. 84, no. 4, Apr. 2012, pp. 679–85

Mouse Corona

Jian Shang “Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry” PLOS Pathogens
https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1008392 (Protein-Protein interaction)

MERS

  1. Lanying Du, et al “Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines”. Nat Commun. 2016 Nov 22;7:13473.(Protein-Protein interaction)
  2. Yang Yang “Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus” PNAS https://www.pnas.org/content/pnas/111/34/12516.full.pdf (Protein-Protein interaction)

PCV2

Didier Duivon “Field evaluation of piglet vaccination with a Mycoplasma hyopneumoniae bacterin as compared to a ready-to-use product including porcine circovirus 2 and M. hyopneumoniae in a conventional French farrow-to-finish farm” Porcine Health Management (2018) 4:4 (Protein-Protein interaction)

PEDV

Kay Kimpston-Burkgren “Characterization of the Humoral Immune Response to Porcine Epidemic Diarrhea Virus Infection under Experimental and Field Conditions Using an AlphaLISA Platform”
Pathogens https://www.mdpi.com/2076-0817/9/3/233 (PEDV IgA/IgG検出)

Rhinovirus (RV)

Engin Baturcam “MEK inhibition drives anti-viral defence in RV but not RSV challenged human airway epithelial cells through AKT/p70S6K/4E-BP1 signalling“ Cell Communication and Signaling
https://biosignaling.biomedcentral.com/track/pdf/10.1186/s12964-019-0378-7 (Cytokine kit)

RSV

  1. Espeseth, Amy S., et al. "Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection." npj Vaccines 5.1 (2020): 1-14. (F protein antibodyの検出)
  2. Percze “Aptamers for respiratory syncytial virus detection“ Nature Scientific Reports https://www.nature.com/articles/srep42794 (ウイルス検出:アッセイ構築)

SmallPox

Nuth, Manunya, et al. “Identification of Inhibitors That Block Vaccinia Virus Infection by Targeting the DNA Synthesis Processivity Factor D4.” Journal of Medicinal Chemistry, vol. 54, no. 9, May 2011, pp. 3260–67, (Protein-Protein interaction)

VEEV (Alphavirus Venezuelan equine encephalitis virus)

Thomas “Identification of novel antivirals inhibiting recognition of Venezuelan equine encephalitis virus capsid protein by the Importin α/β1 heterodimer through high-throughput screening” Antiviral Research Volume 151, March 2018, Pages 8-19 (Protein-Protein interaction)

Various cattle viruses

Woolums “Effect of a DNA-based immunostimulant on growth, performance, and expression of inflammatory and immune mediators in beef calves abruptly weaned and introduced to a complete ration“
Journal of Animal Science
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313151/pdf/sky392.pdf (Bovine TNF-α or IL-1β)

Other

Schlee, Martin, et al. “Recognition of 5’ Triphosphate by RIG-I Helicase Requires Short Blunt Double-Stranded RNA as Contained in Panhandle of Negative-Strand Virus.” Immunity, vol. 31, no. 1, July 2009, pp. 25–34 (Protein-RNA/oligo)

 

レポータージーンアッセイ(Britelite / Neolite / Steadylite)

SARS-CoV-2 (COVID-19)

Jianhui Nie, et al
“Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2” Emerg Microbes Infect. 2020 Dec;9(1):680-686

Dengue and Zika Virus

Hsiao-Han Lin “Dengue and Zika Virus Domain III-Flagellin Fusion and Glycan-Masking E Antigen for Prime-Boost Immunization” Theranostics 2019
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643441/pdf/thnov09p4811.pdf

HIV, SIV, SHIV

  1. Koen K. A. Van Rompay “A Vaccine against CCR5 Protects a Subset of Macaques upon Intravaginal Challenge with Simian Immunodeficiency Virus SIVmac251“ Journal of Virology
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911553/pdf/zjv2011.pdf
  2. Mattia Bonsignori “An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1” Clin Invest
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973118/pdf/JCI73441.pdf
  3. Narayana Cheedarla et al.,“Evolution of Neutralization Response in HIV-1 Subtype C-Infected Individuals Exhibiting Broad Cross-Clade Neutralization of HIV-1 Strains Front“ Immunol., 27 March 2018
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5890096/pdf/fimmu-09-00618.pdf
  4. Pauthner, Matthias G et al. “Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers.” Immunity vol. 50,1 (2019): 241-252.e6.
  5. Marcella Sarzotti-Kelsoe “Optimization and Validation of the TZM-bl Assay for Standardized Assessments of Neutralizing Antibodies Against HIV-1”J Immunol Methods
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040342/pdf/nihms552836.pdf
  6. Anke Schultz “An Automated HIV-1 Env-Pseudotyped Virus Production for Global HIV Vaccine Trials“ Plos One
    https://www.ncbi.nlm.nih.gov/pubmed/?term=An+Automated+HIV-1+Env-Pseudotyped+Virus+Production+for+Global+HIV+Vaccine+Trials
  7. Daniel A. Ozaki ”International Technology Transfer of a GCLP-Compliant HIV-1 Neutralizing Antibody Assay for Human Clinical Trials” Plos One
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267749/pdf/pone.0030963.pdf
  8. Caroline Petitdemange ”Vaccine induction of antibodies and tissue-resident CD8+ T cells enhances protection against mucosal SHIV-infection in young macaques” JCI Insight
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478416/pdf/jciinsight-4-126047.pdf
  9. Marloes A.Naarding “Development of a luciferase based viral inhibition assay to evaluate vaccine induced CD8 T-cell responses”Journal of Immunological Methods/Review
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236027/pdf/nihms551990.pdf
  10. Nicole Sunseri “Human Immunodeficiency Virus Type 1 Modified To Package Simian Immunodeficiency Virus Vpx Efficiently Infects Macrophages and Dendritic Cells” JOURNAL OF VIROLOGY
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3126535/pdf/zjv6263.pdf
  11. M. Anthony Moody “HIV-1 gp120 Vaccine Induces Affinity Maturation in both New and Persistent Antibody Clonal Lineages“ Journal of Virology
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416280/
  12. Nelson R. Wu“Cooperation between somatic mutation and germline-encoded residues enables antibody recognition of HIV-1 envelope glycans“ PLOS PATHOGENS
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936856/pdf/ppat.1008165.pdf
  13. Monica Vaccari “Protection Afforded by an HIV Vaccine Candidate in Macaques Depends on the Dose of SIVmac251 at Challenge Exposure“ Journal of Virology
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592147/pdf/zjv3538.pdf
  14. Justin Pollara “HIV-1 Vaccine-Induced C1 and V2 Env-Specific Antibodies Synergize for Increased Antiviral Activities“ Journal of Virology
  15. David C. Montefiori “Standardized Assessments of Neutralizing Antibodies for HIV/AIDSVaccine Development Duke University Medical Center
    https://www.hiv.lanl.gov/content/nab-reference-strains/html/home.htm
  16. Malaria-Plasmodium falciparum “Luca Cevenini Multicolor Bioluminescence Boosts Malaria Research: Quantitative Dual-Color Assay and Single-Cell Imaging in Plasmodium falciparum Parasites“ Analytical chemistry
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151787/pdf/ac502098w.pdf
  17. Andrew T. Jones “HIV-1 vaccination by needle-free oral injection induces strong mucosal immunity and protects against SHIV challenge“ Nature Communications
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6379385/pdf/41467_2019_Article_8739.pdf
  18. Monica Vaccari “HIV vaccine candidate activation of hypoxia and the inflammasome in CD14+ monocytes is associated with a decreased risk of SIVmac251 acquisition“ Nature Medicine
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992093/pdf/nihms960717.pdf
  19. Laurence Peiperl “Safety and Immunogenicity of a Replication-Defective Adenovirus Type 5 HIV Vaccine in Ad5-Seronegative Persons: A Randomized Clinical Trial (HVTN 054)” Plos One
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965084/pdf/pone.0013579.pdf
  20. Izabela Bialuk “Vaccine Induced Antibodies to the First Variable Loop of Human Immunodeficiency Virus Type 1 gp120, Mediate Antibody-Dependent Virus Inhibition in Macaques Vaccine
    https://pubmed.ncbi.nlm.nih.gov/22037204/
  21. Beryl A. Koblin “Safety and Immunogenicity of an HIV Adenoviral Vector Boost after DNA Plasmid Vaccine Prime by Route of Administration: A Randomized Clinical Trial” Plos One
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171485/
  22. Sanjay Mehendale ”Safety and Immunogenicity of DNA and MVA HIV-1 Subtype C Vaccine Prime-Boost Regimens: A Phase I Randomised Trial in HIV-Uninfected Indian Volunteers” Plos One
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572184/pdf/pone.0055831.pdf
  23. Debashis Dutta ”High throughput generation and characterization of replication-competent clade C transmitter-founder simian human immunodeficiency viruses” Plos One
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5951672/pdf/pone.0196942.pdf
  24. Giacomo Gorini ”Engagement of monocytes, NK cells, and CD4+ Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition” PLOS PATHOGENS
    https://www.ncbi.nlm.nih.gov/pubmed/?term=Engagement+of+monocytes%2C+NK+cells%2C+and+CD4%2B+Th1+cells+by+ALVAC-SIV+vaccination+results+in+a+decreased+risk+of+SIVmac251+vaginal+acquisition

Influenza

  1. H5 Neos Tang “Highly Pathogenic Avian Influenza H5 Hemagglutinin Fused with the A Subunit of Type Iib Escherichia coli Heat Labile Enterotoxin Elicited Protective Immunity and Neutralization by Intranasal Immunization in Mouse and Chicken Models Vaccine
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963717/pdf/vaccines-07-00193.pdf
  2. Xiaolei Ma “Structural basis for therapeutic inhibition of influenza A polymerase PB2 subunit” Scientific Report
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571044/pdf/41598_2017_Article_9538.pdf
  3. Arnab Basu, “New Small Molecule Entry Inhibitors Targeting Hemagglutinin-Mediated Influenza A Virus Fusion” Journal of Virology
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911584/pdf/zjv1447.pdf
  4. Pirada Suphaphiphat ”Human RNA Polymerase I-Driven Reverse Genetics for Influenza A Virus in Canine Cells” Journal of Virology
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838141/pdf/1925-09.pdf
  5. Wen-Chun Liu “Unmasking Stem-Specific Neutralizing Epitopes by Abolishing N-Linked Glycosylation Sites of Influenza Virus Hemagglutinin Proteins for Vaccine Design“ Journal of Virology
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021406/pdf/zjv8496.pdf
  6. I"Jiwon Lee "Persistent Antibody Clonotypes Dominate the Serum Response to Influenza Over Multiple Years and Repeated Vaccinations Cell Host Microbe
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417944/pdf/nihms-1519399.pdf

MCRIP1 KO

  1. Jane S. Weng “MCRIP1 promotes the expression of lungsurfactant proteins in mice by disrupting CtBPmediated epigenetic gene silencing” COMMUNICATIONS BIOLOGY
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586819/pdf/42003_2019_Article_478.pdf
  2. Carole Trzaska “2,6-Diaminopurine as a highly potent corrector of UGA nonsense mutations“ NATURE COMMUNICATIONS
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083880/pdf/41467_2020_Article_15140.pdf

Poxvirus, Rabies

Ben R. Stading “Infectivity of attenuated poxvirus vaccine vectors and immunogenicity of a raccoonpox vectored rabies vaccine in the Brazilian Free-tailed bat (Tadarida brasiliensis)
Vaccine. 2016 Oct 17;34(44):5352-5358.

RSV

Harrison G. Jones “Structural basis for recognition of the central conserved region of RSV G by neutralizing human antibodies“ PLOS PATHOGENS
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856423/pdf/ppat.1006935.pdf

SERBP

Yelenis Mari “SERBP1 is a component of the Liver Receptor Homolog-1 transcriptional complex” J Proteome Res. 2015 Nov 6; 14(11): 4571–4580.

 


分子間相互作用